skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Etter, Brian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Adversarial Malware Generation (AMG), the generation of adversarial malware variants to strengthen Deep Learning (DL)-based malware detectors has emerged as a crucial tool in the development of proactive cyberdefense. However, the majority of extant works offer subtle perturbations or additions to executable files and do not explore full-file obfuscation. In this study, we show that an open-source encryption tool coupled with a Reinforcement Learning (RL) framework can successfully obfuscate malware to evade state-of-the-art malware detection engines and outperform techniques that use advanced modification methods. Our results show that the proposed method improves the evasion rate from 27%-49% compared to widely-used state-of-the-art reinforcement learning-based methods. 
    more » « less